COMPUTED TOMOGRAPHY RADIATION DOSE IN A REGIONAL SURVEY

Serna A.¹, Garcia-Angosto E.A.², Garcia-Sanchez A.J.², Garcia-Sanchez F.², Ramos D.¹

¹Medical Physics Department. Hospital Universitario Santa Lucia. Cartagena. Spain

²Department of Information and Communication Technologies, Universidad Politecnica de Cartagena (UPCT). Spain.

Purpose

 To evaluate the patient dose in computed tomography (CT) examinations and contribute to the stablishment of dose reference levels using a dose management system.

Material and Methods

- 3 public hospitals
- 5 CT hellical multi-slice scanners (16 to 128 slices): 4 Siemens and 1 General-Electric.
- GE-Dosewatch was used to register patient dose indexes, CTDIvol and DLP, and the technical parameters.
- 3 months collecting data.

Results. I

 CTDIvol and the DLP data approximate well to a log-normal distribution function whereas the scanned length fits better to a normal distribution.

Results. II

Examinations	N	CTDIvol (mGy cm)	DLP (mGy)
		Median Range	Median Range
Head	1445	33 – 64	527 – 1162
Thorax	579	7 -10	218 – 334
Abdomen	1055	10 -12	383 - 453

Results. III

- Dose variations up to 30% among same CT model scanners.
- Patient size selection was not deemed necessary due to the high number of cases per examination
- A drawback of this massive data is the presence of extreme outliers, and thus data filtering is mandatory

Conclusion

 Dose management systems provide an efficient tool to overview and optimize radiological dose levels.